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Introduction

How to find approximations to 3 seemingly unrelated problems:

Subspace approximation

Max-Cut

Permanent of PSD matrices

Goals:

A unified framework to encompass and generalize these problems

Simple rounding analysis to obtain optimal approximation factors matching
lower-bounds

Bounding expectations of functions of Gaussians gives analysis for rounding
algorithms for optimization problems on the sphere
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Subspace Approximation

Given a1, . . . , am ∈ Rn and p ≥ 1. Find (n − d)-dimensional subspace V that
minimizes (

m∑
i=1

dist(ai ,V )p

) 1
p

p = 2 equivalent to least squares,
polynomial-time solution via SVD.

p =∞, minimize maximum distance
to V , NP-hard problem in
computational convex geometry.
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Subspace Approximation SDP Relaxation

min
V

(
m∑
i=1

dist(ai ,V )p

) 1
p

=
min
X

(
m∑
i=1

(a⊤i XX
⊤ai )

p/2

) 1
p

s.t. X⊤X = Id
X ∈ Rn×d

SDP relaxation via convex hull of feasible set (Fantope):

min
Q

(
m∑

k=1

(a⊤i Qai )
p/2

) 1
p

s.t. Tr(Q) = d
0 ⪯ Q ⪯ In

Constant-factor approximation algorithm [DTV11] for p ≥ 1, 0 ≤ d ≤ n.

For d = 1 and p > 2, [Gur+16] shows that it is NP-hard to improve constant.

[Gur+16] Guruswami et al. “Bypassing UGC from some optimal geometric inapproximability results”. 2016.

[DTV11] Deshpande, Tulsiani, and Vishnoi. “Algorithms and hardness for subspace approximation”. 2011.
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Max Cut

Given A ≻ 0, the MaxCut problem is:

max
x∈{±1}n

⟨x ,Ax⟩

For PSD A, we have a 2
π -approximation by Nesterov [Nes98].

NP-hard to improve approximation constant. [BRS15]

Can be improved to 0.878 [GW95] if A is graph Laplacian.

[BRS15] Briët, Regev, and Saket. “Tight hardness of the non-commutative Grothendieck problem”. 2015.

[Nes98] Nesterov. “Semidefinite relaxation and nonconvex quadratic optimization”. 1998.

[GW95] Goemans and Williamson. “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming”. 1995.
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Max Cut as Optimization on the Sphere

An equivalent formulation over the sphere:

max
x∈{±1}n

⟨x ,Ax⟩ = max
∥z∥2=1

∥∥∥A 1
2 z
∥∥∥2
1
.

Using variational characterization ⟨x ,Ax⟩ = maxy∈Rn 2 ⟨x , y⟩ −
〈
y ,A−1y

〉
:

max
x∈{±1}n,y∈Rn

2 ⟨x , y⟩ −
〈
y ,A−1y

〉
= max

y∈Rn
2 ∥y∥1 −

〈
y ,A−1y

〉
Substitute y = λA

1
2 z , where ∥z∥ = 1, λ ∈ R.

max
∥z∥2=1,λ∈R

2λ
∥∥∥A 1

2 z
∥∥∥
1
− λ2 = max

∥z∥2=1

∥∥∥A 1
2 z
∥∥∥2
1
.

Generalized to matrix 2→ q norms when 0 < q <= 2 (MaxCut equivalent
to 2→ 1 norm).
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Permanent of PSD Matrices

Permanent of a matrix per(A) =
∑

σ

∏n
i=1 Ai,σ(i)

#P-hard to compute in general, NP-hard to compute sign

A ≥ 0: Counts bipartite perfect matchings

A ⪰ 0: Output probabilities of boson sampling experiment

For A ≥ 0, (1 + ϵ) randomized approximation algorithm [JSV04], e−n

deterministic approximation algorithm [LSW].

For A ⪰ 0, e−(1+γ)n approximation algorithm [Ana+17; YP21].

NP-hard to approximate better than e−γn, current-best approximation factor
e−(0.9999+γ)n [ENOG24].

[JSV04] Jerrum, Sinclair, and Vigoda. “A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries”. 2004.

[LSW] Linial, Samorodnitsky, and Wigderson. “A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents”.

[Ana+17] Anari et al. “Simply Exponential Approximation of the Permanent of Positive Semidefinite Matrices”. 2017.

[YP21] Yuan and Parrilo. “Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices”. 2021.

[ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. “On approximability of the Permanent of PSD matrices”. 2024.
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Approximating Permanents of PSD Matrices

Let A = V †V and vi be the columns of V

We study the following polynomial optimization problem on the complex
(n − 1)-sphere of radius

√
n, and its SDP relaxation:

ρ(A) ≡ max
∥x∥2=n

n∏
i=1

|⟨x , vi ⟩|2

rel(A) ≡ max
X

n∏
i=1

〈
X , viv

†
i

〉
s.t.

{
Tr(X ) = n
X ⪰ 0
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Product of Linear Forms and Permanent Approximation

Theorem ([YP21])

Let γ = 0.5772... be the Euler-Mascheroni constant. Then

e−γnrel(A)
1
≤ ρ(A) ≤ rel(A)

Connection to permanent:

Theorem ([YP21])

e−n(1+γ)rel(A)
1
≤ e−nρ(A) ≤ per(A)

2
≤ rel(A)

Approximating permanent ←→ polynomial optimization over sphere

(1) is tight for low-rank matrices, (2) is tight for high-rank matrices,
[ENOG24] found arbitrage to improve approximation by 10−4.

[YP21] Yuan and Parrilo. “Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices”. 2021.

[ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. “On approximability of the Permanent of PSD matrices”. 2024.

Chenyang Yuan (Toyota Research Institute) Rounding SDP relaxations on the sphere Friday 26th July, 2024 9 / 16



Product of Linear Forms and Permanent Approximation

Theorem ([YP21])

Let γ = 0.5772... be the Euler-Mascheroni constant. Then

e−γnrel(A)
1
≤ ρ(A) ≤ rel(A)

Connection to permanent:

Theorem ([YP21])

e−n(1+γ)rel(A)
1
≤ e−nρ(A) ≤ per(A)

2
≤ rel(A)

Approximating permanent ←→ polynomial optimization over sphere

(1) is tight for low-rank matrices, (2) is tight for high-rank matrices,
[ENOG24] found arbitrage to improve approximation by 10−4.

[YP21] Yuan and Parrilo. “Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices”. 2021.

[ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. “On approximability of the Permanent of PSD matrices”. 2024.

Chenyang Yuan (Toyota Research Institute) Rounding SDP relaxations on the sphere Friday 26th July, 2024 9 / 16



Product of Linear Forms and Permanent Approximation

Theorem ([YP21])

Let γ = 0.5772... be the Euler-Mascheroni constant. Then

e−γnrel(A)
1
≤ ρ(A) ≤ rel(A)

Connection to permanent:

Theorem ([YP21])

e−n(1+γ)rel(A)
1
≤ e−nρ(A) ≤ per(A)

2
≤ rel(A)

Approximating permanent ←→ polynomial optimization over sphere

(1) is tight for low-rank matrices, (2) is tight for high-rank matrices,
[ENOG24] found arbitrage to improve approximation by 10−4.

[YP21] Yuan and Parrilo. “Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices”. 2021.

[ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. “On approximability of the Permanent of PSD matrices”. 2024.

Chenyang Yuan (Toyota Research Institute) Rounding SDP relaxations on the sphere Friday 26th July, 2024 9 / 16



A unified perspective

Given A1, . . . ,Ad ⪰ 0. Consider the image of the sphere {x ∈ Kn | ∥x∥ = 1}
under the map

A : Kn → Rd
+

A(x) = (⟨x ,A1x⟩ , . . . , ⟨x ,Adx⟩)

Im(A) is a non-convex set in Rd , convex hull given by

conv(Im(A)) = {(⟨X ,A1⟩ , . . . , ⟨X ,Ad⟩) | Tr(X ) = 1,X ⪰ 0}

How well does conv(Im(A)) approximate Im(A)?

What measure of approximation to use?
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A unified perspective

We study the following relaxation

max
∥x∥=1

∑
i

f (⟨x ,Aix⟩)
relax−→ max

Tr(X )=1,X⪰0

∑
i

f (⟨X ,Ai ⟩),

where Ai ⪰ 0 and f is concave

f (a) = ap for 0 ≤ p ≤ 1: Matrix 2→ p
2 norm:

f (a) =
√
a: MaxCut with PSD objective (ℓ1 norm)

f (a) = log a: Permanents and product of PSD forms (KL-divergence)

f (a) = −ap for p ≥ 1: Subspace approximation for d = 1

f (a) = −a log a: Entropy maximization of POVM (Reverse KL)
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Summary of results

Rounding algorithm: Given optimum X ∗ = UU†, produce unit vector x̂ by:

Sample x ∼ N(0,X ∗)

Normalize x̂ = x/ ∥x∥

f (a) Approximation Factor (K = R) Factor (K = C)

ap Multiplicative 2pΓ (1/2 + p) /
√
π Γ(1 + p)

log a Additive γ + log 2 γ

−a log a Additive 2 1

Additional gains when we can bound the rank of SDP solution X ∗
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−a log a Additive 2 1

Additional gains when we can bound the rank of SDP solution X ∗
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Improved bounds for low-rank solutions

When f (a) = ap and the solution of X ∗ has rank r , approximation factor

αf (R) =
rpΓ(r/2)Γ(1/2 + p)

Γ(1/2)Γ(r/2 + p)
>

2pΓ(1/2 + p)

Γ(1/2)

αf (C) =
rpΓ(r)Γ(1 + p)

Γ(r + p)
> Γ(1 + p)

ℝ ℂ
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1.00

(a) αf (K) against p when r → ∞
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(b) αf (K) against r when p = 1
2
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Rounding Analysis

max
∥x∥=1

∑
i

log(⟨x ,Aix⟩)
relax−→ max

Tr(X )=1,X⪰0

∑
i

log(⟨X ,Ai ⟩),

Rounding algorithm: Given rank-r optimum X ∗ = UU†, produce x̂ :

Sample x ∼ N(0,X ∗)
Normalize x̂ = x/ ∥x∥

Analyze:

E

[∑
i

log(⟨x̂ ,Ai x̂⟩)

]
=
∑
i

E
z∼N(0,I )

[
log z†U†AiUz − log z†U†Uz

]
Key Step: g(λ) = E log

∑r
i=1 λi |zi |2 is a symmetric concave function

E log z†U†Uz = E log

(
r∑

i=1

λi |zi |2
)
≤ E log

(
1

r

r∑
i=1

|zi |2
)

= Hr−1 − γ − log(r)
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Main Technical Tool/Trick

Bounding function on a domain with symmetry, e.g. simplex
∆r = {λ | λ ≥ 0,

∑
i λi = 1}

Maximum (minimum) of symmetric concave (convex) function on the simplex
achieved at center: λi =

1
r .

Minumum (maximum) of symmetric concave (convex) function on the simplex
achieved at vertices: λ1 = 1, λ2, . . . , λr = 0.
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Conclusion

Summary:

Simple technique for obtaining tight bounds on expected values of concave
functions of Gaussian variables.

Tight analysis (NP-hard to improve) for Max-Cut, product of linear forms,
subspace approximation.

Questions:

Why do these tight approximation bounds depend on properties of Gaussian
variables, though they are not mentioned in the problem description?

Are there other classes of functions of Gaussian random variables for which we can
obtain similarly tight approximation bounds?

Chenyang Yuan (Toyota Research Institute) Rounding SDP relaxations on the sphere Friday 26th July, 2024 16 / 16



Conclusion

Summary:

Simple technique for obtaining tight bounds on expected values of concave
functions of Gaussian variables.

Tight analysis (NP-hard to improve) for Max-Cut, product of linear forms,
subspace approximation.

Questions:

Why do these tight approximation bounds depend on properties of Gaussian
variables, though they are not mentioned in the problem description?

Are there other classes of functions of Gaussian random variables for which we can
obtain similarly tight approximation bounds?

Chenyang Yuan (Toyota Research Institute) Rounding SDP relaxations on the sphere Friday 26th July, 2024 16 / 16


