Rounding semidefinite relaxations of concave functions of quadratic forms

Chenyang Yuan
Based on joint work with Pablo Parrilo

Toyota Research Institute

Friday $26^{\text {th }}$ July, 2024

Introduction

How to find approximations to 3 seemingly unrelated problems:

- Subspace approximation
- Max-Cut
- Permanent of PSD matrices

Introduction

How to find approximations to 3 seemingly unrelated problems:

- Subspace approximation
- Max-Cut
- Permanent of PSD matrices

Goals:

- A unified framework to encompass and generalize these problems
- Simple rounding analysis to obtain optimal approximation factors matching lower-bounds

Introduction

How to find approximations to 3 seemingly unrelated problems:

- Subspace approximation
- Max-Cut
- Permanent of PSD matrices

Goals:

- A unified framework to encompass and generalize these problems
- Simple rounding analysis to obtain optimal approximation factors matching lower-bounds

Bounding expectations of functions of Gaussians gives analysis for rounding algorithms for optimization problems on the sphere

Subspace Approximation

Given $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ and $p \geq 1$. Find $(n-d)$-dimensional subspace V that minimizes

$$
\left(\sum_{i=1}^{m} \operatorname{dist}\left(a_{i}, V\right)^{p}\right)^{\frac{1}{p}}
$$

Subspace Approximation

Given $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ and $p \geq 1$. Find $(n-d)$-dimensional subspace V that minimizes

$$
\left(\sum_{i=1}^{m} \operatorname{dist}\left(a_{i}, V\right)^{p}\right)^{\frac{1}{p}}
$$

$p=2$ equivalent to least squares, polynomial-time solution via SVD.
$p=\infty$, minimize maximum distance to V, NP-hard problem in computational convex geometry.

Subspace Approximation SDP Relaxation

$$
\begin{aligned}
\min _{V}\left(\sum_{i=1}^{m} \operatorname{dist}\left(a_{i}, V\right)^{p}\right)^{\frac{1}{p}}=\min _{X} & \left(\sum_{i=1}^{m}\left(a_{i}^{\top} X X^{\top} a_{i}\right)^{p / 2}\right)^{\frac{1}{p}} \\
\text { s.t. } \quad & X^{\top} X=I_{d} \\
& X \in \mathbb{R}^{n \times d}
\end{aligned}
$$

Subspace Approximation SDP Relaxation

$$
\begin{aligned}
\min _{V}\left(\sum_{i=1}^{m} \operatorname{dist}\left(a_{i}, V\right)^{p}\right)^{\frac{1}{p}}=\min _{X} & \left(\sum_{i=1}^{m}\left(a_{i}^{\top} X X^{\top} a_{i}\right)^{p / 2}\right)^{\frac{1}{p}} \\
\text { s.t. } \quad & X^{\top} X=I_{d} \\
& X \in \mathbb{R}^{n \times d}
\end{aligned}
$$

SDP relaxation via convex hull of feasible set (Fantope):

$$
\begin{array}{ll}
\min _{Q} & \left(\sum_{k=1}^{m}\left(a_{i}^{\top} Q a_{i}\right)^{p / 2}\right)^{\frac{1}{p}} \\
\text { s.t. } & \operatorname{Tr}(Q)=d \\
& 0 \preceq Q \preceq I_{n}
\end{array}
$$

Subspace Approximation SDP Relaxation

$$
\begin{aligned}
\min _{V}\left(\sum_{i=1}^{m} \operatorname{dist}\left(a_{i}, V\right)^{p}\right)^{\frac{1}{p}}=\min _{X} & \left(\sum_{i=1}^{m}\left(a_{i}^{\top} X X^{\top} a_{i}\right)^{p / 2}\right)^{\frac{1}{p}} \\
\text { s.t. } \quad & X^{\top} X=I_{d} \\
& X \in \mathbb{R}^{n \times d}
\end{aligned}
$$

SDP relaxation via convex hull of feasible set (Fantope):

$$
\begin{array}{ll}
\min _{Q} & \left(\sum_{k=1}^{m}\left(a_{i}^{\top} Q a_{i}\right)^{p / 2}\right)^{\frac{1}{p}} \\
\text { s.t. } & \operatorname{Tr}(Q)=d \\
& 0 \preceq Q \preceq I_{n}
\end{array}
$$

Constant-factor approximation algorithm [DTV11] for $p \geq 1,0 \leq d \leq n$.
For $d=1$ and $p>2$, [Gur +16$]$ shows that it is NP-hard to improve constant.

Max Cut

Given $A \succ 0$, the MaxCut problem is:

$$
\max _{x \in\{ \pm 1\}^{n}}\langle x, A x\rangle
$$

[BRS15] Briët, Regev, and Saket. "Tight hardness of the non-commutative Grothendieck problem". 2015.
[Nes98] Nesterov. "Semidefinite relaxation and nonconvex quadratic optimization". 1998.
[GW95] Goemans and Williamson. "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite $\overline{\text { programm }} \mathbf{~ T h g " . ~ 1 9 9 5 , ~}$

Max Cut

Given $A \succ 0$, the MaxCut problem is:

$$
\max _{x \in\{ \pm 1\}^{n}}\langle x, A x\rangle
$$

For PSD A, we have a $\frac{2}{\pi}$-approximation by Nesterov [Nes98].
NP-hard to improve approximation constant. [BRS15]

[^0]
Max Cut

Given $A \succ 0$, the MaxCut problem is:

$$
\max _{x \in\{ \pm 1\}^{n}}\langle x, A x\rangle
$$

For PSD A, we have a $\frac{2}{\pi}$-approximation by Nesterov [Nes98].
NP-hard to improve approximation constant. [BRS15]
Can be improved to 0.878 [GW95] if A is graph Laplacian.

[^1]
Max Cut as Optimization on the Sphere

An equivalent formulation over the sphere:

$$
\max _{x \in\{ \pm 1\}^{n}}\langle x, A x\rangle=\max _{\|z\|_{2}=1}\left\|A^{\frac{1}{2}} z\right\|_{1}^{2} .
$$

Max Cut as Optimization on the Sphere

An equivalent formulation over the sphere:

$$
\max _{x \in\{ \pm 1\}^{n}}\langle x, A x\rangle=\max _{\|z\|_{2}=1}\left\|A^{\frac{1}{2}} z\right\|_{1}^{2}
$$

Using variational characterization $\langle x, A x\rangle=\max _{y \in \mathbb{R}^{n}} 2\langle x, y\rangle-\left\langle y, A^{-1} y\right\rangle$:

$$
\max _{x \in\{ \pm 1\}^{n}, y \in \mathbb{R}^{n}} 2\langle x, y\rangle-\left\langle y, A^{-1} y\right\rangle=\max _{y \in \mathbb{R}^{n}} 2\|y\|_{1}-\left\langle y, A^{-1} y\right\rangle
$$

Substitute $y=\lambda A^{\frac{1}{2}} z$, where $\|z\|=1, \lambda \in \mathbb{R}$.

$$
\max _{\|z\|_{2}=1, \lambda \in \mathbb{R}} 2 \lambda\left\|A^{\frac{1}{2}} z\right\|_{1}-\lambda^{2}=\max _{\|z\|_{2}=1}\left\|A^{\frac{1}{2}} z\right\|_{1}^{2}
$$

Max Cut as Optimization on the Sphere

An equivalent formulation over the sphere:

$$
\max _{x \in\{ \pm 1\}^{n}}\langle x, A x\rangle=\max _{\|z\|_{2}=1}\left\|A^{\frac{1}{2}} z\right\|_{1}^{2}
$$

Using variational characterization $\langle x, A x\rangle=\max _{y \in \mathbb{R}^{n}} 2\langle x, y\rangle-\left\langle y, A^{-1} y\right\rangle$:

$$
\max _{x \in\{ \pm 1\}^{n}, y \in \mathbb{R}^{n}} 2\langle x, y\rangle-\left\langle y, A^{-1} y\right\rangle=\max _{y \in \mathbb{R}^{n}} 2\|y\|_{1}-\left\langle y, A^{-1} y\right\rangle
$$

Substitute $y=\lambda A^{\frac{1}{2}} z$, where $\|z\|=1, \lambda \in \mathbb{R}$.

$$
\max _{\|z\|_{2}=1, \lambda \in \mathbb{R}} 2 \lambda\left\|A^{\frac{1}{2}} z\right\|_{1}-\lambda^{2}=\max _{\|z\|_{2}=1}\left\|A^{\frac{1}{2}} z\right\|_{1}^{2}
$$

Generalized to matrix $2 \rightarrow q$ norms when $0<q<=2$ (MaxCut equivalent to $2 \rightarrow 1$ norm).

Permanent of PSD Matrices

Permanent of a matrix $\operatorname{per}(A)=\sum_{\sigma} \prod_{i=1}^{n} A_{i, \sigma(i)}$ \#P-hard to compute in general, NP-hard to compute sign

[^2]
Permanent of PSD Matrices

Permanent of a matrix $\operatorname{per}(A)=\sum_{\sigma} \prod_{i=1}^{n} A_{i, \sigma(i)}$

\#P-hard to compute in general, NP-hard to compute sign

- $A \geq 0$: Counts bipartite perfect matchings
- $A \succeq 0$: Output probabilities of boson sampling experiment

[^3]
Permanent of PSD Matrices

Permanent of a matrix $\operatorname{per}(A)=\sum_{\sigma} \prod_{i=1}^{n} A_{i, \sigma(i)}$
\#P-hard to compute in general, NP-hard to compute sign

- $A \geq 0$: Counts bipartite perfect matchings
- $A \succeq 0$: Output probabilities of boson sampling experiment

For $A \geq 0,(1+\epsilon)$ randomized approximation algorithm [JSV04], e^{-n} deterministic approximation algorithm [LSW].

[^4]
Permanent of PSD Matrices

Permanent of a matrix $\operatorname{per}(A)=\sum_{\sigma} \prod_{i=1}^{n} A_{i, \sigma(i)}$
\#P-hard to compute in general, NP-hard to compute sign

- $A \geq 0$: Counts bipartite perfect matchings
- $A \succeq 0$: Output probabilities of boson sampling experiment

For $A \geq 0,(1+\epsilon)$ randomized approximation algorithm [JSV04], e^{-n} deterministic approximation algorithm [LSW].

For $A \succeq 0, e^{-(1+\gamma) n}$ approximation algorithm [Ana+17; YP21].
NP-hard to approximate better than $e^{-\gamma n}$, current-best approximation factor $e^{-(0.9999+\gamma) n}[$ ENOG24].

[^5]
Approximating Permanents of PSD Matrices

Let $A=V^{\dagger} V$ and v_{i} be the columns of V
We study the following polynomial optimization problem on the complex ($n-1$)-sphere of radius \sqrt{n}, and its SDP relaxation:

$$
\begin{aligned}
\rho(A) & \equiv \max _{\|x\|^{2}=n} \prod_{i=1}^{n}\left|\left\langle x, v_{i}\right\rangle\right|^{2} \\
\operatorname{rel}(A) & \equiv \max _{X} \prod_{i=1}^{n}\left\langle X, v_{i} v_{i}^{\dagger}\right\rangle \text { s.t. }\left\{\begin{array}{l}
\operatorname{Tr}(X)=n \\
X \succeq 0
\end{array}\right.
\end{aligned}
$$

Product of Linear Forms and Permanent Approximation

Theorem ([YP21])
Let $\gamma=0.5772 \ldots$ be the Euler-Mascheroni constant. Then

$$
e^{-\gamma n} \operatorname{rel}(A) \stackrel{1}{\leq} \rho(A) \leq \operatorname{rel}(A)
$$

[^6][ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. "On approximability of the Permanent of PSD matrices". 2024.

Product of Linear Forms and Permanent Approximation

Theorem ([YP21])
Let $\gamma=0.5772 \ldots$ be the Euler-Mascheroni constant. Then

$$
e^{-\gamma n_{\mathrm{rel}}(A)} \leq \rho(A) \leq \operatorname{rel}(A)
$$

Connection to permanent:
Theorem ([YP21])

$$
e^{-n(1+\gamma)} \operatorname{rel}(A) \stackrel{1}{\leq} e^{-n} \rho(A) \leq \operatorname{per}(A) \stackrel{2}{\leq} \operatorname{rel}(A)
$$

Approximating permanent \longleftrightarrow polynomial optimization over sphere

[^7]
Product of Linear Forms and Permanent Approximation

Theorem ([YP21])

Let $\gamma=0.5772 \ldots$ be the Euler-Mascheroni constant. Then

$$
e^{-\gamma n_{\mathrm{rel}}(A)}{ }^{\frac{1}{\leq} \rho(A) \leq \operatorname{rel}(A)}
$$

Connection to permanent:
Theorem ([YP21])

$$
e^{-n(1+\gamma)} \operatorname{rel}(A) \stackrel{1}{\leq} e^{-n} \rho(A) \leq \operatorname{per}(A) \stackrel{2}{\leq} \operatorname{rel}(A)
$$

Approximating permanent \longleftrightarrow polynomial optimization over sphere
(1) is tight for low-rank matrices, (2) is tight for high-rank matrices, [ENOG24] found arbitrage to improve approximation by 10^{-4}.

[^8]
A unified perspective

Given $A_{1}, \ldots, A_{d} \succeq 0$. Consider the image of the sphere $\left\{x \in \mathbb{K}^{n} \mid\|x\|=1\right\}$ under the map

$$
\begin{aligned}
\mathcal{A} & : \mathbb{K}^{n} \rightarrow \mathbb{R}_{+}^{d} \\
\mathcal{A}(x) & =\left(\left\langle x, A_{1} x\right\rangle, \ldots,\left\langle x, A_{d} x\right\rangle\right)
\end{aligned}
$$

A unified perspective

Given $A_{1}, \ldots, A_{d} \succeq 0$. Consider the image of the sphere $\left\{x \in \mathbb{K}^{n} \mid\|x\|=1\right\}$ under the map

$$
\begin{aligned}
\mathcal{A} & : \mathbb{K}^{n} \rightarrow \mathbb{R}_{+}^{d} \\
\mathcal{A}(x) & =\left(\left\langle x, A_{1} x\right\rangle, \ldots,\left\langle x, A_{d} x\right\rangle\right)
\end{aligned}
$$

$\operatorname{Im}(\mathcal{A})$ is a non-convex set in \mathbb{R}^{d}, convex hull given by

$$
\operatorname{conv}(\operatorname{Im}(\mathcal{A}))=\left\{\left(\left\langle X, A_{1}\right\rangle, \ldots,\left\langle X, A_{d}\right\rangle\right) \mid \operatorname{Tr}(X)=1, X \succeq 0\right\}
$$

A unified perspective

Given $A_{1}, \ldots, A_{d} \succeq 0$. Consider the image of the sphere $\left\{x \in \mathbb{K}^{n} \mid\|x\|=1\right\}$ under the map

$$
\begin{aligned}
\mathcal{A} & : \mathbb{K}^{n} \rightarrow \mathbb{R}_{+}^{d} \\
\mathcal{A}(x) & =\left(\left\langle x, A_{1} x\right\rangle, \ldots,\left\langle x, A_{d} x\right\rangle\right)
\end{aligned}
$$

$\operatorname{Im}(\mathcal{A})$ is a non-convex set in \mathbb{R}^{d}, convex hull given by

$$
\operatorname{conv}(\operatorname{Im}(\mathcal{A}))=\left\{\left(\left\langle X, A_{1}\right\rangle, \ldots,\left\langle X, A_{d}\right\rangle\right) \mid \operatorname{Tr}(X)=1, X \succeq 0\right\}
$$

How well does $\operatorname{conv}(\operatorname{Im}(\mathcal{A}))$ approximate $\operatorname{Im}(\mathcal{A})$?

What measure of approximation to use?

A unified perspective

We study the following relaxation

$$
\max _{\|x\|=1} \sum_{i} f\left(\left\langle x, A_{i} x\right\rangle\right) \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(X)=1, x \succeq 0} \sum_{i} f\left(\left\langle X, A_{i}\right\rangle\right),
$$

where $A_{i} \succeq 0$ and f is concave

A unified perspective

We study the following relaxation

$$
\max _{\|x\|=1} \sum_{i} f\left(\left\langle x, A_{i} x\right\rangle\right) \quad \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(X)=1, X \succeq 0} \sum_{i} f\left(\left\langle X, A_{i}\right\rangle\right),
$$

where $A_{i} \succeq 0$ and f is concave
$f(a)=a^{p}$ for $0 \leq p \leq 1:$ Matrix $2 \rightarrow \frac{p}{2}$ norm:

- $f(a)=\sqrt{a}$: MaxCut with PSD objective (ℓ_{1} norm)
- $f(a)=\log a$: Permanents and product of PSD forms (KL-divergence)

A unified perspective

We study the following relaxation

$$
\max _{\|x\|=1} \sum_{i} f\left(\left\langle x, A_{i} x\right\rangle\right) \quad \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(x)=1, x \succeq 0} \sum_{i} f\left(\left\langle X, A_{i}\right\rangle\right),
$$

where $A_{i} \succeq 0$ and f is concave
$f(a)=a^{p}$ for $0 \leq p \leq 1:$ Matrix $2 \rightarrow \frac{p}{2}$ norm:

- $f(a)=\sqrt{a}$: MaxCut with PSD objective (ℓ_{1} norm)
- $f(a)=\log a$: Permanents and product of PSD forms (KL-divergence)
$f(a)=-a^{p}$ for $p \geq 1$: Subspace approximation for $d=1$

A unified perspective

We study the following relaxation

$$
\max _{\|x\|=1} \sum_{i} f\left(\left\langle x, A_{i} x\right\rangle\right) \quad \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(X)=1, x \succeq 0} \sum_{i} f\left(\left\langle X, A_{i}\right\rangle\right),
$$

where $A_{i} \succeq 0$ and f is concave
$f(a)=a^{p}$ for $0 \leq p \leq 1:$ Matrix $2 \rightarrow \frac{p}{2}$ norm:

- $f(a)=\sqrt{a}$: MaxCut with PSD objective (ℓ_{1} norm)
- $f(a)=\log a$: Permanents and product of PSD forms (KL-divergence)
$f(a)=-a^{p}$ for $p \geq 1$: Subspace approximation for $d=1$
$f(a)=-a \log a$: Entropy maximization of POVM (Reverse KL)

Summary of results

Rounding algorithm: Given optimum $X^{*}=U U^{\dagger}$, produce unit vector \hat{x} by:

- Sample $x \sim N\left(0, X^{*}\right)$
- Normalize $\hat{x}=x /\|x\|$

Summary of results

Rounding algorithm: Given optimum $X^{*}=U U^{\dagger}$, produce unit vector \hat{x} by:

- Sample $x \sim N\left(0, X^{*}\right)$
- Normalize $\hat{x}=x /\|x\|$

$f(a)$	Approximation	Factor $(\mathbb{K}=\mathbb{R})$	Factor $(\mathbb{K}=\mathbb{C})$
a^{p}	Multiplicative	$2^{p} \Gamma(1 / 2+p) / \sqrt{\pi}$	$\Gamma(1+p)$
$\log a$	Additive	$\gamma+\log 2$	γ
$-a \log a$	Additive	2	1

Additional gains when we can bound the rank of SDP solution X^{*}

Improved bounds for low-rank solutions

When $f(a)=a^{p}$ and the solution of X^{*} has rank r, approximation factor

$$
\begin{aligned}
& \alpha_{f}(\mathbb{R})=\frac{r^{p} \Gamma(r / 2) \Gamma(1 / 2+p)}{\Gamma(1 / 2) \Gamma(r / 2+p)}>\frac{2^{p} \Gamma(1 / 2+p)}{\Gamma(1 / 2)} \\
& \alpha_{f}(\mathbb{C})=\frac{r^{p} \Gamma(r) \Gamma(1+p)}{\Gamma(r+p)}>\Gamma(1+p)
\end{aligned}
$$

__ R ----- C

(a) $\alpha_{f}(\mathbb{K})$ against p when $r \rightarrow \infty$

(b) $\alpha_{f}(\mathbb{K})$ against r when $p=\frac{1}{2}$

Rounding Analysis

$$
\max _{\|x\|=1} \sum_{i} \log \left(\left\langle x, A_{i} x\right\rangle\right) \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(X)=1, X \succeq 0} \sum_{i} \log \left(\left\langle X, A_{i}\right\rangle\right),
$$

Rounding Analysis

$$
\max _{\|x\|=1} \sum_{i} \log \left(\left\langle x, A_{i} x\right\rangle\right) \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(X)=1, x \succeq 0} \sum_{i} \log \left(\left\langle X, A_{i}\right\rangle\right),
$$

Rounding algorithm: Given rank-r optimum $X^{*}=U U^{\dagger}$, produce \hat{x} :

- Sample $x \sim N\left(0, X^{*}\right)$
- Normalize $\hat{x}=x /\|x\|$

Rounding Analysis

$$
\max _{\|x\|=1} \sum_{i} \log \left(\left\langle x, A_{i} x\right\rangle\right) \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(X)=1, x \succeq 0} \sum_{i} \log \left(\left\langle X, A_{i}\right\rangle\right),
$$

Rounding algorithm: Given rank-r optimum $X^{*}=U U^{\dagger}$, produce \hat{x} :

- Sample $x \sim N\left(0, X^{*}\right)$
- Normalize $\hat{x}=x /\|x\|$

Analyze:

$$
\mathbb{E}\left[\sum_{i} \log \left(\left\langle\hat{x}, A_{i} \hat{x}\right\rangle\right)\right]=\sum_{i} \underset{z \sim N(0, I)}{\mathbb{E}}\left[\log z^{\dagger} U^{\dagger} A_{i} U z-\log z^{\dagger} U^{\dagger} U z\right]
$$

Rounding Analysis

$$
\max _{\|x\|=1} \sum_{i} \log \left(\left\langle x, A_{i} x\right\rangle\right) \quad \xrightarrow{\text { relax }} \max _{\operatorname{Tr}(X)=1, X \succeq 0} \sum_{i} \log \left(\left\langle X, A_{i}\right\rangle\right),
$$

Rounding algorithm: Given rank-r optimum $X^{*}=U U^{\dagger}$, produce \hat{x} :

- Sample $x \sim N\left(0, X^{*}\right)$
- Normalize $\hat{x}=x /\|x\|$

Analyze:

$$
\mathbb{E}\left[\sum_{i} \log \left(\left\langle\hat{x}, A_{i} \hat{x}\right\rangle\right)\right]=\sum_{i} \underset{z \sim N(0, I)}{\mathbb{E}}\left[\log z^{\dagger} U^{\dagger} A_{i} U z-\log z^{\dagger} U^{\dagger} U z\right]
$$

Key Step: $g(\lambda)=\mathbb{E} \log \sum_{i=1}^{r} \lambda_{i}\left|z_{i}\right|^{2}$ is a symmetric concave function
$\mathbb{E} \log z^{\dagger} U^{\dagger} U z=\mathbb{E} \log \left(\sum_{i=1}^{r} \lambda_{i}\left|z_{i}\right|^{2}\right) \leq \mathbb{E} \log \left(\frac{1}{r} \sum_{i=1}^{r}\left|z_{i}\right|^{2}\right)=H_{r-1}-\gamma-\log (r)$

Main Technical Tool/Trick

Bounding function on a domain with symmetry, e.g. simplex $\Delta_{r}=\left\{\lambda \mid \lambda \geq 0, \sum_{i} \lambda_{i}=1\right\}$

Maximum (minimum) of symmetric concave (convex) function on the simplex achieved at center: $\lambda_{i}=\frac{1}{r}$.

Minumum (maximum) of symmetric concave (convex) function on the simplex achieved at vertices: $\lambda_{1}=1, \lambda_{2}, \ldots, \lambda_{r}=0$.

Conclusion

Summary:

Simple technique for obtaining tight bounds on expected values of concave functions of Gaussian variables.

Tight analysis (NP-hard to improve) for Max-Cut, product of linear forms, subspace approximation.

Conclusion

Summary:

Simple technique for obtaining tight bounds on expected values of concave functions of Gaussian variables.

Tight analysis (NP-hard to improve) for Max-Cut, product of linear forms, subspace approximation.

Questions:

Why do these tight approximation bounds depend on properties of Gaussian variables, though they are not mentioned in the problem description?

Are there other classes of functions of Gaussian random variables for which we can obtain similarly tight approximation bounds?

[^0]: [BRS15] Briët, Regev, and Saket. "Tight hardness of the non-commutative Grothendieck problem". 2015.
 [Nes98] Nesterov. "Semidefinite relaxation and nonconvex quadratic optimization". 1998.
 [GW95] Goemans and Williamson. "Improved approximation algorithms for maximum cut and satisfiability problems lusing semidefinite programm面g". 1995,

[^1]: [BRS15] Briët, Regev, and Saket. "Tight hardness of the non-commutative Grothendieck problem". 2015.
 [Nes98] Nesterov. "Semidefinite relaxation and nonconvex quadratic optimization". 1998.
 [GW95] Goemans and Williamson. "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite $\overline{\text { programm面g". 1995. }}$

[^2]: [JSV04] Jerrum, Sinclair, and Vigoda. "A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries". 2004.
 [LSW] Linial, Samorodnitsky, and Wigderson. "A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents".
 [Ana+17] Anari et al. "Simply Exponential Approximation of the Permanent of Positive Semidefinite Matrices". 2017.
 [YP21] Yuan and Parrilo. "Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices". 2021.
 [ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. "On approximability of the Permanent of PSD matrices". 2024.

[^3]: [JSV04] Jerrum, Sinclair, and Vigoda. "A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries". 2004.
 [LSW] Linial, Samorodnitsky, and Wigderson. "A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents". [Ana+17] Anari et al. "Simply Exponential Approximation of the Permanent of Positive Semidefinite Matrices". 2017. [YP21] Yuan and Parrilo. "Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices". 2021.
 [ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. "On approximability of the Permanent of PSD matrices". 2024.

[^4]: [JSV04] Jerrum, Sinclair, and Vigoda. "A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries". 2004.
 [LSW] Linial, Samorodnitsky, and Wigderson. "A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents". [Ana+17] Anari et al. "Simply Exponential Approximation of the Permanent of Positive Semidefinite Matrices". 2017. [YP21] Yuan and Parrilo. "Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices". 2021.
 [ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. "On approximability of the Permanent of PSD matrices". 2024.

[^5]: [JSV04] Jerrum, Sinclair, and Vigoda. "A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries". 2004.
 [LSW] Linial, Samorodnitsky, and Wigderson. "A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents". [Ana+17] Anari et al. "Simply Exponential Approximation of the Permanent of Positive Semidefinite Matrices". 2017.
 [YP21] Yuan and Parrilo. "Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices". 2021.
 [ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. "On approximability of the Permanent of PSD matrices". 2024.

[^6]: [YP21] Yuan and Parrilo. "Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices". 2021.

[^7]: [YP21] Yuan and Parrilo. "Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices". 2021.
 [ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. "On approximability of the Permanent of PSD matrices". 2024.

[^8]: [YP21] Yuan and Parrilo. "Maximizing Products of Linear Forms, and the Permanent of Positive Semidefinite Matrices". 2021.
 [ENOG24] Ebrahimnejad, Nagda, and Oveis Gharan. "On approximability of the Permanent of PSD matrices". 2024.

