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ABSTRACT
The vulnerability of Mobility-as-a-Service (MaaS) sys-
tems to Denial-of-Service (DoS) attacks is studied. We
use a queuing-theoretical framework to model the re-
dispatch process used by operators to maintain a high
service availability, as well as potential cyber-attacks
on this process. It encompasses a customer arrival rate
model at different sections of an urban area to pick up
vehicles to travel within the network. Expanding this re-
balance model, we analyze DoS cyber-attacks of MaaS
systems by controlling a fraction of the cars maliciously
through fake reservations (so called Zombies) placed in
the system (similar to the computer science field where
a Zombie is a computer that a remote attacker has ac-
cessed for malicious purpose). The attacker can then
use the block-coordinate descent algorithm proposed in
the present work to derive optimal strategies to mini-
mize the efficiency of the MaaS system, thereby allow-
ing us to quantify the economic loss of such systems
under attack. The technique is shown to work well and
enables us to arbitrarily deplete taxi availabilities based
on the attacker’s choice and the radius of attacks, which
is demonstrated by drawing a “Cal” logo in Manhat-
tan. Finally, a cost-benefit analysis from 75 million taxi
trips shows diminishing returns for the attacker and that
countermeasures raising the attack cost to more than
$15 protect MaaS systems in NYC from Zombies.

1. INTRODUCTION
In recent years, the rapid expansion of Mobility-as-

a-Service (MaaS) systems such as ride-sharing services
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and (electric) car rental programs triggered research on
the optimal management of such systems: optimal dis-
patch [9], optimal fleet size [5], general design [18], and
optimal re-balancing algorithms [21] to achieve the cur-
rent level of performance of MaaS systems. The neces-
sary central coordination of the dispatch of vehicles can
be seen as re-balancing the network and it can be done
manually as commonly done by taxi companies with hu-
man dispatchers, by apps such as taxi hailing apps, or
by incentivization from the two-sided markets formed
by ride-sharing companies such as Uber or Lyft.

However, the cyber-physical nature of MaaS systems
makes them vulnerable to physical attacks from mali-
cious drivers, cyber attacks on the hailing apps, and
economic attacks by controlling the two-sided markets.
These DoS attacks can re-route a fraction of vehicles
to reduce the time usage of the network and decrease
the profits for the MaaS company. Hence, the secu-
rity of this type of cyber-physical systems has gained a
lot of attention recently [2]. While there have been re-
search on the security of general networks [14, 22], with
applications to power systems [17, 20], communication
systems [1, 19], and freeway control [15], this work is
amongst the first to study their security against cyber-
attacks on MaaS systems, and understand the extent of
attacks that can be performed on them.

Expanding an established framework on MaaS sys-
tems, attacks can be seen as malicious agents control-
ling the vehicles of the MaaS system, which we will refer
to as Zombie passengers. When they are serviced by
real cars, e.g. Uber or Lyft, these cars become Zomb-
ified, i.e. a ZUber or a ZLyft (similar attacks involv-
ing one company calling and canceling vehicles of the
other have happened in the past [16]).The term Zom-
bie is used following computer science terminology for
a computer that has been compromised remotely by a
hacker to launch DoS attacks. Our main contributions
in this article include: (i) a framework for the study of
cyber-security in MaaS systems encompassing different
features, e.g. attack budget and radius, (ii) designing a
block-coordinate descent algorithm to optimize attacks,



Type rate routing contribution

customer φi αij MAS model [5]
balancer ψi βij re-balancing [21]
Zombie νi κij cyber-security

Table 1: Summary of Models
Different types of passenger with their arrival rates,
routing probabilities, and the authors who introduced
them.

(iii) a case study in NYC showing the extent of dam-
age we can do with our attacks using a model generated
from 75 million real taxi trips. This framework will ul-
timately be usable to compute the optimal attack price
point of an attacker, hence helping cab companies to ad-
just their cancellation fees to protect themselves against
such attacks.

2. A QUEUING-THEORETICAL MODEL
We consider a MaaS system in an urban area divided

into N small sections (typically spanning 2 or 3 city
blocks) indexed by i ∈ S. We assume that M vehicles
provide service to customers between pairs of sections
(i, j) ∈ S×S. Next we describe previous models for cus-
tomer travel and balancing mechanisms on the network.
Finally, we introduce our model for Zombies. Table 1
summarizes these three models.

2.1 Model Description
Customer model: Customers arrive at each section

i following a time-invariant Poisson process with rate
φi > 0. Upon arrival at a section i, a customer chooses
to go to section j 6= i with probability αij ≥ 0, where∑
j∈S αij = 1 and αii = 0 for all i ∈ S. Furthermore, if

a vehicle is not available at a section upon arrival of a
customer, the customer leaves without service (i.e. cus-
tomers do not queue). The model also assumes that
there is sufficient capacity for vehicle to queue for pas-
sengers, as is often the case of pickup locations or taxi
stations. The travel times for different passengers trav-
eling from section i to section j constitute an indepen-
dently and identically distributed (i.i.d.) sequence of
exponentially distributed random variables with mean
Tij > 0. This model was used in [5] to describe a vehicle
rental company as a queuing network.

Re-balancing process: In any MaaS systems, there
is a need for re-balancing to account for uneven demand.
A re-balancing vehicle is one traveling to a destination
without customers to fulfill the demand at its desti-
nation. The process has been studied extensively [9,
11, 21] and we use the framework of [21] to model it
with balancers driving these re-balancing vehicles. This

paradigm is analogous to the MaaS company “spoof-
ing” its own drivers for re-balancing purposes. In [21],
each section i generates balancers according to a Poisson
process with rate ψi ≥ 0 and routes these balancers to
section j 6= i with probability βij , where

∑
j∈S βij = 1

and βii = 0 for all i ∈ S. The re-balancing process is
assumed to be independent from the customer arrival
process. The model also supposes that the balancer is
lost if there is no car at the section upon its generation.

Cyber-security: We extend the re-balancing work
of [21] for the purpose of cyber-security analysis. We
assume the attacker can generate malicious agents or
Zombies at each section i following a Poisson process
with rate νi ≥ 0 and route them to section j 6= i with
probability κij ≥ 0, where

∑
j∈S κij = 1 and κii = 0 for

all i ∈ S. We assume that the re-balancing policy does
not detect the attacks and its parameters ψi and βij
only depend on the customers’ demand φi and αij . We
also define the radius r of an attack, which is the fur-
thest (Manhattan or `1) distance that a Zombie can be
routed through. This captures the fact that the attacker
has a weaker control over the network than customers.
For example, if the attacker targets a ride-sharing com-
pany by making a call and then canceling, only nearby
vehicles will be dispatched and affected. Hence we de-
fine E the set of pairs (i, j) ∈ S × S such that routing
is allowed from i to j. In other words, denoting 1A the
indicator function of event A, we have the constraints

1{(i,j)/∈E}κij = 0 ∀ i, j (1)

2.2 Comments on the Model
Although travel times are in general not exponentially

distributed, their distribution does not affect the predic-
tive accuracy of similar queuing networks [7]. The cus-
tomers’ routing probabilities αij reasonably constitute
an irreducible Markov chain for dense environments,
and we do not consider congestion, even though it nega-
tively affects the efficiency of the network and the effect
of re-balancing.

Note that the“passenger loss”assumption in the model
where passengers not willing to wait (they leave the
section immediately when there are no taxis available) is
accurate in numerous US markets. This framework is a
good setting for analyzing the benefits and vulnerability
of MaaS systems: (i) with high service availability (the
median wait time for an Uber in major U.S. cities in
2014 was under 4 min [12]), and (ii) competing against
other MaaS or alternate transportation systems (partic-
ularly in dense cities where the waiting time is critical).

The passenger loss model is particularly relevant in an
adversarial setting in which attacks aim at reducing ser-
vice availability to incur passenger loss and encourage
passengers to use a rival system, similar to the reported
DoS attacks between Uber and Lyft [16]. From an an-



alytical perspective, the passenger loss model consider-
ably simplifies our model because customer arrivals at a
section is equivalent to a virtual service to the vehicles
currently queuing (and available) at the section.

The re-balancing and attacks are respectively modeled
as balancers and Zombies following the same process
as customers (with passenger loss), but independently
and with different arrival rates and routing probabilities,
thus allowing to combine the customer demand, the re-
balancing process, and the attacks into a single queuing
network. In our case, the loss of balancers and Zom-
bies describe processes that encourage a re-allocation of
vehicles to sections but does not enforce it.

Another critical assumption is that there is no attacker-
defender game (see [3]) since the re-balancing only aims
at high service availability given customers’ demand,
and does not try to defend from possible attacks. An
interesting extension would be the analysis of a one-
stage game in which the balancers moves first with the
knowledge of the Zombies’ best response.

3. NETWORK ANALYSIS
Following [5] and [21], the model described above can

be cast into a closed Jackson network, which we now
present with a cyber-attack extension.

3.1 Jackson Network Model
In the present work, we combine the customer, bal-

ancer, and Zombie processes. From the superposition of
independent Poisson processes, the total arrival process
of all three types of passengers is Poisson with rate

λi = φi + ψi + νi (2)

where φi, ψi, and νi respectively represent the arrival
rates of customers, balancers, and Zombies. A gen-
eralized passenger that arrives will either be classified
as one of the three classes with respective probabili-
ties φi/λi, ψi/λi, and νi/λi. The routing probability
rij := P(i → j) of a generalized passenger arriving at
section i to select a destination j is then given by

rij =
∑
class

P(i→ j | class)P(class) (3)

With αij , βij , and κij being the routing probabilities
associated to each class, we have (with λi given by (2)):

rij = αij
φi
λi

+ βij
ψi
λi

+ κij
νi
λi

(4)

Sections are modeled as single-server (SS) nodes (or
“section” nodes) and the route between two sections as
infinite-server (IS) nodes (or “route” nodes). When a
generalized passenger arrives at a non-empty section, a
vehicle departs from that node to move to a route node
that connect the origin to the destination selected by

Figure 1: Illustration on a three section network.
On the left, a passenger arrives at section 1 and
picks a car to go to section 2. The equivalent
Jackson network is shown on the right side.

that passenger. After spending an exponentially dis-
tributed amount of time at the route node (the travel-
time), the vehicle moves to the destination section node
(see Figure 1).

From a queuing perspective, if vehicles are present at
section i, they are processed with service rate λi given
by (2), and are routed to the IS (route) node between
sections i and j with probability rij given by (4). Then
vehicles at an IS node between sections i and j are pro-
cessed in parallel (i.e. assuming infinite capacity roads
with no congestion effects) with service rate 1/Tij each
and move to SS node i with probability 1. Hence, the
MAS system is modeled as a closed Jackson network
with respect to the vehicles with vehicle service rate
µn(xn) at a generalized node n given by

µn(xn) =

{
λi if n = section i

xn/Tij if n = route i→ j
(5)

where xn ∈ {0, 1, · · · , M} is the number of vehicles at
node n (and M the number of vehicles in the network).
Note that µn only depends on xn on a route node. The
routing probability pnn′ from node n to node n′ is

pnn′ =


rij if n = section i, n′ = route i→ j

1 if n = route i→ j, n′ = section j

0 otherwise

(6)

3.2 Asymptotic Behavior and Fairness
A quantity of interest is the availability, which is de-

fined as the percentage of customers who find a vehicle
available at a section upon arrival. Mathematically, it is



S Set of SS (section) nodes, |S| = N
M Fleet size of the MaaS system
Tij Mean travel time from i ∈ S to j ∈ S

φi, αij Customer arrival rate and routing matrix
ψi, βij Balancer arrival rate and routing matrix
νi, κij Zombie arrival rate and routing prob.
Ai(M) Prob. of i ∈ S of having ≥ 1 vehicle

ai asymptotic availability, γi/maxj∈S γj
1A indicator function of condition A

Table 2: Summary of notations

given by the following steady-state probability (see [8]):

Ai(M) := P(Xi ≥ 1) =
γiG(M − 1)

G(M)
(7)

where the random variableXi represent the queue length
at section i ∈ S. Note that the quantity G(M) above
is the normalization factor associated to the equilibrium
state distribution of the queue lengths {Xi}i∈S provided
by the Gordon-Newell theorem [6]. The computation of
G(M) is very expensive with complexity that grows as(
|N |+M − 1

|N |

)
, where |N | is the cardinality of N (i.e.,

the number of nodes in the network), so that |N | = N2.
Hence, we want to obtain performance metrics without
computing explicitly the quantity G(M), e.g. by study-
ing the asymptotic behavior of the network when the
fleet size M goes to infinity. The following result from
[13] gives the asymptotic availability at a SS node i:

ai := lim
M→∞

Ai(M) =
γi

maxj∈S γj
(8)

where maxj∈S γj is the highest relative utilization. Hence,
when M approaches infinity, sections with the highest
relative utilization can have availability arbitrarily close
to 1, while other sections have availability strictly less
than 1, since in this case γi < maxj∈S γj).

To cancel this effect, Zhang and Pavone [21] designed
a re-balancing policy with balancer arrival rates ψi and
routing βij that maintain fairness in the network, i.e.
γi = γj for all i, j ∈ S. When M is goes to infinity, this
means that the availability of all sections goes to 1 since
γi = maxj∈S γj for all i ∈ S. In addition to imposing
fairness, they minimize the number of re-balancing ve-
hicles given by the quantity

∑
i,j∈S Tijβijψi.

4. OPTIMAL ATTACK PROBLEM
The contributions of the present article encompass the

objectives of an attacker into an optimization frame-
work, which we solve very efficiently.

4.1 Maximizing Passenger Loss

If the MaaS company gets a constant amount per ride,
the attacker wants to maximize customer loss, i.e. min-
imize the customers picking a vehicle:

min
∑
i∈S

φiAi(M) (9)

If the MaaS system gets an amount that is proportional
to the length of the ride, a more harmful objective is

min
∑
i,j∈S

φiαijTijAi(M) (10)

hence the total time usage for the customers is mini-
mized. Both objectives have general form

min
∑
i∈S

wiAi(M) (11)

where wi > 0 are some user-defined arbitrary weights.
To avoid computing G(M) due to the complexity, the
availabilities Ai(M) are normalized with maxj∈S γj and
consequently study the availabilityAi(M) when the fleet
size M goes to ∞ (see (8))

min
∑
i∈S

wi
γi

maxj∈S γj
= min

∑
i∈S

wiai (12)

Finally, there must be one i ∈ S such that ai = 1, hence
the objective is equivalent to finding the index k such
that ak is set to 1 and minimizing over the remaining
quantities {ai}i 6=k

min
k∈S

wk · 1 + min
{ai}i6=k

∑
i 6=k

wiai

 (13)

Hence, we can solve |S| = N programs and select the
one with the minimum objective value.

4.2 Attack Budget
The most important constraints are the traffic equa-

tions of the Jackson network. Using Lemmas 4.1 and
4.2 in [21], they can be written in terms of SS (section)
nodes and asymptotic utilization ai

(φi+ψi+νi)ai =
∑
j∈S

(αjiφj+βjiψj+κjiνj)aj , ∀ i (14)

Let k ∈ S such that ak = 1, then the constraint is

φk + ψk + νk =
∑
j∈S

(αjkφj + βjkψj + κjkνj)aj (15)

Note that the constraint (15) is redundant since sum-
ming the constraints (14) for i 6= k (with ak = 1)
gives (15). Furthermore, the attacker injects Zombies
with arrival rates νi and routing matrix κij to achieve
(13). With no restriction on the attack rates, setting
νi = ν > 0 for all i 6= k and routing all the Zombies to



section k with probability 1 gives, using (15)∑
j 6=k

aj ≤ (φk + ψk + νk)/ν → 0 when ν → +∞

Then the positive utilizations ai go to 0 for all i 6= k and
the problem is reduced to mink∈S wk. A more realistic
problem is setting a limited budget b for the attacks∑

i∈S
νi ≤ b (16)

4.3 Formulation
We suppose the customers’ and balancers’ demands

are given, and define their combined rate and routing
probabilities as

ϕi := φi + ψi (17)

δij := (αijφi + βijψi)/(φi + ψi) (18)

and so the combined routing probabilities rij of the cus-
tomers, balancers, and Zombies given in (4) can be ex-
pressed as follows

rij =
δjiϕj + κjiνj

ϕi + νi
∀ i, j ∈ S (19)

Given k ∈ S such that ak = 1, the Optimal Attack Prob-
lem (OAP) consists in manipulating the Zombie arrival
rates νi and routing κij probabilities such that:

min
κij ,νi,ai

∑
i 6=k

wiai +
p

2

∑
i

ν2i (20)

s.t. ai =
∑
j∈S

δjiϕj + κjiνj
ϕi + νi

aj ∀ i ∈ S \ {k} (21)

κij ≥ 0,
∑
j

κij = 1, 1{(i,j)/∈E}κij = 0 (22)

νi ≥ 0,
∑
i

νi ≤ b (23)

Note that we have included a `2-regularization term
p
2

∑
i ν

2
i in our objective. It compensates for the budget

constraint (23) which is known to encourage sparsity [4]
in the entries νi. Sparsity allocates most of the bud-
get b to a few sections i, resulting in very high attack
rates, which is unrealistic in practice because of limita-
tions inherent to the physical nature of the MaaS, e.g.
bounded fleet size, limited capacity of streets. Hence,
the `2-regularization captures these physical limitations.

We have also included the ai in the decision variables
since they vary. In fact, the ai are function of κij , νi
and can be written directly as ai(κ, ν).

Lemma 1. For any attack strategies νi and κij:

ai > 0 for all i ∈ S (24)

ai is uniquely defined for all i ∈ S (25)

Name Fix Vary Minimize

Attack Routing Pb. νi ai, κij
∑
i wiai

Min. Attack Pb. ai κij , νi
∑
i ν

2
i

Attack Rate Pb. κij νi, ai
∑
i wiai + p

2

∑
i ν

2
i

Table 3: Summary of three-step algorithm

Proof. By assumption, the probabilities αij consti-
tute an irreducible Markov chain. By equation (4), the
probabilities rij lead to an irreducible Markov chain as
well. The {ai}i vector satisfying equations (21) is pro-
portional to the steady state distribution for the tran-
sition probabilities {rij}ij and by the Perron-Frobenius
theorem, it is positive [10]. Finally, the constraint ak =
1 completely fixes the vector {ai}i.

4.4 Block-coordinate Descent
The above optimization program is non-convex and

is difficult to solve numerically. Specifically, the vector
{ai}i∈S is a function of κij , νi from Lemma 1, hence the
gradient of the objective is given by∑

l 6=k

wi({∂νial}i ,
{
∂κijal

}
i,j

) + p({νi}i, {0}i,j) (26)

where each the partial derivative of ai satisfies a set of
N − 1 linear equations obtained by differentiating the
balance constraints (21). Hence, computing the gradi-
ent prohibitively requires to solve N2 linear programs
of dimension N − 1 by differentiating the constraints
(21). The total complexity for computing the gradi-
ent is (N2 − N)2 ≥ (N − 1)4. Our of our main con-
tributions is the design of a tractable block-coordinate
descent algorithm to solve the above problem, where
each sub-problem is summarized in Table 3. We pose
the Minimum Attack Problem (MAP) and the Attack
Routing Problem (ARoP) and show that they can be
re-formulated as a quadratic and a linear program re-
spectively with N2 non-negative variables and N con-
straints. Using an efficient solver, CPLEX, we solve the
MAP and ARoP efficiently. The Attack Rate Problem
(ARaP) has N variables which are {νi}i∈S and can be
solved efficiently using a projected gradient descent al-
gorithm. The gradient computation requires solving N
linear programs of dimension N − 1, hence an O(N3)
complexity that is tractable. We also note that the
ARoP, MAP, and ARaP can be interpreted as specific
attack scenarios in their own right.

5. A TAXONOMY OF ATTACKS
In this section, our contribution is proposing a taxon-

omy of attack scenarios described by the ARoP, MAP,
and ARaP (in addition to the OAP). In each scenario,



the attacker is given a fixed allocation of either the avail-
abilities ai, the attack rates νi, or the attack routing
κij , and he wants to allocate the two other types of “re-
cources”optimally to harm the system. We also describe
how each one of these programs fits into the proposed
block-coordinate descent algorithm.

5.1 Attack Routing Problem (ARoP)
In this scenario, the attacker can only inject attacks

with fixed rates. For example, the attacker has placed
devices at different sections i ∈ S that remotely spoof
the hailing apps of nearby vehicles, to send them to
specific locations. Hence, given νi, the attacker wants
to optimize the routing to achieve objective (13). This
is the Attack Routing Problem (ARoP), which can be
re-formulated as a Linear Program from this lemma

Theorem 1. Let us consider the following linear pro-
gram (LARoP)

min
yij

∑
ij

wiyij (27)

s.t.
∑
j 6=i

(λiyij − νjyji) =
∑
j>l

δjiϕjyjl ∀ i 6= k (28)

yij ≥ 0,
∑
j 6=k

ykj = 1 (29)

Let y?ij be an optimal solution to LARoP. Then, an op-
timal solution of the ARoP is

ai =
∑
j 6=i

y?ij (30)

κij = y?ij/ai (31)

Proof. We can obtain LARoP from the OAP by
fixing νi and making the change of variables yij := κijai
to equations (20) – (22).

We decrease the
∑
i 6=k wiai part of the objective of

the OAP with respect to ai, κij by solving the above
program efficiently with CPLEX, as part of our block-
coordinate descent algorithm.

5.2 Attack Rate Problem (ARaP)
In this scenario, the attacker hacks the apps of the

vehicles to display “ghost” demands at specific sections
i. With fixed routing κij , the attack rates νi are cho-
sen to achieve objective (20). The Attack Rate Problem
(ARaP) consists in optimizing the OAP with respect to
the rates νi for all i and the asymptotic availabilities
ai for i 6= k, while the routing of attacks κij are fixed.
Since the sum

∑
i 6=k wiai is a function of the νi, we com-

pute the Jacobian matrix of the vector {ai}i 6=k, which
is given by the following:

Lemma 2. The Jacobian matrix (∂ai/∂νj)i6=k,j∈S of

dimension (N − 1) × N has columns xj ∈ RN−1 for

j ∈ S that satisfy

(D −M)xj = vj ∀ j ∈ S (32)

where D is a diagonal matrix with entries {ϕi + νi}i 6=k,
M = {φjδji + νjκji}i 6=k,j 6=k, and vj ∈ RN−1 for j ∈ S
are vectors with entries {aj(κji − 1{i=j})}i 6=k where 1A
is the indicator function of event A.

Solving the above N systems of N−1 linear equations
gives the Jacobian of {ai}i 6=k. Hence we can solve the
ARaP with the projected gradient descent algorithm,
where g is the gradient of the objective:

{νi}i∈S :=Π ({νi}i∈S − t g) (33)

g :=
∑
i6=k

(∂ai/∂νj)j∈S + p(νj)j∈S (34)

where t > 0 is the step size and Π is the projection onto
the `1-ball of radius b, i.e. {x ∈ RS≥0 :

∑
i∈S xi ≤ b}.

We use the O(N logN) implementation described in [4].
We use a step size decreasing in 1/

√
n where n is the

number of iterations and complement it with a simple
line search to have a lower objective at each iteration.

5.3 Minimum Attack Problem (MAP)
We consider a scenario in which the attacker wants

to achieve target availabilities ai at each station in the
network with the minimum quadratic cost of attacks
1
2

∑
i ν

2
i . Given a target of fixed positive availabilities

ai for each section, the attacker instead minimizes the
cost of such attacks. The Minimum Attack Problem
(MAP) can be formulated as follows

min
κij ,νi

1

2

∑
i

ν2i (35)

s.t. ai =
∑
j∈S

δjiϕj + κjiνj
ϕi + νi

aj ∀ i ∈ S \ {k} (36)

κij ≥ 0,
∑
j

κij = 1, 1{(i,j)/∈E}κij = 0 (37)

νi ≥ 0 ∀ i ∈ S (38)

The constraints can be formulated as flow constraints

Theorem 2. Let us define

si := aiϕi −
∑
j 6=i

ajδjiϕj ∀ i ∈ S (39)

and consider the following Quadratic Program

min
xij

∑
i

1

2a2i

∑
j

xij

2

(40)

s.t.
∑
j 6=i

(xji − xij) = si ∀ i ∈ S (41)

xij ≥ 0 1{(i,j)/∈E}xij = 0 ∀ i, j ∈ S (42)



This is always feasible. Let x?ij be an optimal solution
to it. Then, an optimal solution to the MAP is:

νi =
∑
j 6=i

x?ij/ai (43)

κij =

{
x?ij/(νiai) if νi > 0

1/
∑
j 1{(i,j)∈E} otherwise

(44)

Proof. We apply the following change of variables

xij := νiκijai ∀ i, j (45)

which converts the MAP into the above program with
{si}i∈S given by (39) and νi =

∑
j 6=i xij/ai as a result of

the change of variable. Note that xij can be interpreted
as the rate of attack from station i to j. This problem is
feasible because the capacity on each edge is unbounded
and the source flows sum to 0:∑

i

si =
∑
i

aiϕi −
∑
i,j 6=i

ajδjiϕi = 0 (46)

Therefore, we can find the minimal-cost attacks that
achieve any arbitrary availabilities.

Within the proposed block-coordinate descent frame-
work, we add the budget constraint (23) to the MAP
using the solution of the previous step as initial solu-
tion, and solve it efficiently using CPLEX. Note that
the objective of the above program can be generalized
to any convex function, and a linear objective results in
a min-cost-flow problem (MCFP). This reduction to a
MCFP was shown in [21] for the purpose of re-balancing
vehicles with an objective minimizing the number of re-
balancing trips

min
ψi, βij

∑
i,j

ψiTijβij (47)

where ψi, βij are the balancers arrival rates and routing
probabilities respectively. In our case, the MAP step
of our algorithm redistributes the highest attack rates
among sections, thus avoiding numerical corner cases
associated to the sparsity promoting constraint (23).

6. APPLICATION TO NYC TAXI SYSTEM
We illustrate the results on a data set comprising 1.1

billion trips gathered since Yellow Taxis’ digital trip
record began, from January 2009 to June 2015. We
infer the parameters for the queueing theoretic model
described in (5) and (6) from these trips. This data
is provided by the New York City Taxi and Limousine
Commission and includes pickup and drop-off locations,
trip time, and fare for each trip.

We divide midtown and downtown Manhattan into
531 square sections using a grid that is aligned with the
road layout of Manhattan, each section serving a region
1-2-block wide. Only grid squares with a significant

arrival rate are considered. This results in a Jackson
network with more than 282,000 nodes when road nodes
between each pair of sections are included. Then we
use all 75 million trips originating during the weekday
evening peak period from 5-7pm to infer the parameters
for the queueing model φi and Tij via the sample mean,
and αij via Laplacian smoothing. In the process, we
checked that φi closely follows a Poisson distribution,
validating our assumption about customer arrivals. The
customer arrival rate is about 10,600 per hour and there
are about 2,500 taxis in the network in this time period.

6.1 Experiment 1: Controlling Availabilities
In this experiment, given any arbitrary set of availabil-

ities ai, we find the minimal cost of attacks needed to
control the network such that the resulting availabilities
match the provided ones. To illustrate this we show that
we can create arbitrary availability patterns in the city,
in particular the “Cal” logo, see Figure 2a. An optimal
control is obtained by solving the MAP (i.e. the second
step in our block-coordinate descent algorithm to solve
the OAP), but with a linear objective min

∑
i νi, result-

ing in a linear program. We proceed with the simulation
by first balancing the network (assuming that real MaaS
have high service availability) using the methodology of
[21], i.e. solving the MAP with the availabilities uni-
formly equal to 1 and with a linear objective of the
form (47). This yields a total rate of 2,200 re-balancing
vehicles per hour. We then compute the attack strategy
on the balanced network. When the attacking radius is
unlimited, injecting 800 Zombies per hour achieves the
availability pattern encoded in the “Cal” logo.

Next, we decrease the radius of attacks by limiting the
routing from a section i to values between 1 and 15 in
terms of Manhattan distance (or `1 with a section block
as a unit of length), and find the minimum attacks rate
needed to create the“Cal” logo, as illustrated by Figures
2. Figures 2b-c show the optimal attack strategies in
terms of the rates and routing directions, and Figure 2d
the minimal attack rates as a decreasing function of the
radius, see Figure 2 for more details.

6.2 Experiment 2: Minimizing Availabilities
In this experiment, we solve the OAP on the Jack-

son network model learned from the NYC taxi trips
data. To avoid numerical difficulties related to the very
large disparity in customer arrival rates at the differ-
ent sections (the squares close to Grand Central sta-
tion having customer arrival rates of 200 vehicles per
hour while the sections along East river have one cus-
tomer arrival every four hours on average between 5 and
7pm), we cluster adjacent blocks together and aggregate
the arrival rates such that the minimum arrival rate at
a section is 30 customers per hour, resulting in a re-



Figure 2: Effect of Radius of Attacks
(a): Target availability pattern following a pixelated version of the “Cal” logo. (b) and (c): Best attack policy to
achieve the target with maximum `1-radius of 0.3km (1 block) and 2km (7 blocks) respectively: each arrow shows
the direction of the κij-weighted barycenter of the destination sections j from an origin i, and the color of each
square encodes the attack rate. (d): Total attack rate per hour needed to achieve the specified availabilities as a
function of radius. We can see that if we limit the radius of attacks to one block, as in (b), vehicles are routed
through many intermediate stations, whereas in (c), increasing the radius allows the attacker to remove cars from
regions with low availabilities (yellow in (a)) and send them directly to the borders of Manhattan. Hence, limiting
the attack radius to small values greatly hinders the attacks’ effectiveness, and increasing the radius past 1-2 km
does result in diminishing returns.

duction to 331 blocks. We then balance the network
(due to the dispatching of vehicles in response to un-
even demand) and apply the proposed block-coordinate
descent algorithm for solving the OAP with an objective
(10) minimizing the customer time usage in the network.
The different steps are summarized in Algorithm 1.

Algorithm 1 Algorithm for solving the AOP.
1: choose arbitrary section k ∈ S.
2: initialize νi and κij
3: while stopping criteria not satisfied:
4: update ai, κij via ARoP with νi fixed.
5: update νi, κij via MAP with ai fixed.
6: update ai, νi via ARaP with κij fixed.
7: return ai, νi, κij

We do not set a limit on the radius of attacks and ap-
ply the descent method for values of the budget b of at-

tack rate in {100, 500, 1000, 1500, 2000, 2500, 3000, 5000,
7000, 10000} with the parameter p controlling the weight
of the `2-regularization equal to 0.1 for b ≤ 1000 and
0.01 otherwise. The total customer and balancer arrival
rates remains unchanged on the reduced network, with
10,600 and 2,200 vehicles per hour respectively, hence
the budget of attacks accounts for values from 0.8% to
44% of the total rate (all three types of passengers).
Initializing with uniform Zombies arrival rate through-
out the network and uniform distributions for the rout-
ing probabilities, Algorithm 1 gives an attack strategy
that consistently send waves of Zombies to several spots
around the center of Manhattan, see Figure 3a and b. In
equilibrium, these target regions have high availabilities
while the rest of Manhattan has very low availabilities.
We can also see that the attacks are concentrated on one



Figure 3: Optimal Attack Rates and Routing
(a) and (b): The attack rates and routing probabilities for a total budget of 2000 Zombies per hour are showed in the
same style as in Figure 2, with an unlimited radius and 3km (9 squares) radius respectively. (c): Passenger/financial
loss as a function of attacks from 10 simulations of the Jackson network (each one associated to a given budget and
a strategy computed from the OAP). The vertical scale on the left shows the rate of passenger loss and the one
on the right the financial loss assuming that a passenger spends $10.75 on an average. The red line denotes the
price of attack (assuming $5/unit) against the budget. If 100% of the loss is gained by the attacker (from stealing
customers), then the red region is financially beneficial for the attacker. The red line shows that an attack costing
$5/unit (its slope) incurs a maximum loss of $22,500/hour for the MaaS system. (d): Maximum financial loss for the
MaaS system as a function of the cost of one unit of attack, obtained from (c). A cost of attack above $15 protects
the system.

spot if the radius can be high, while the attacks concen-
trate on several different spots around Manhattan for a
low radius.

6.3 Experiment 3: Network Simulation
Solving for the attack rates using the OAP gives very

low objective values, with a loss of customer time usage
from 60% to 100%. This surprising efficiency is in fact
the asymptotic behavior of the system under attacks,
where most of the vehicles are blocked in the center re-
gion because the balancer process does not re-dispatch
the vehicles in other parts of the network in reaction
to the attacks. To account for the transient state since
coordinated attacks can be seen as a malicious shock
propagating throughout the network, we run a simula-
tion of the Jackson network used for our model to study
the effectiveness of our attack strategy, with 2500 taxis
(average number of taxis in the area at the time of the
day used for our parameter inference). We start from
a closed network in equilibrium and introduce attacks.
For each queue in the simulation, customers, balancers

and Zombies arrive with our specified rates, and are
lost when there are no vehicles in the queue. We then
record the number of customers lost for one hour and
subtract from this the base rate of loss when the net-
work is balanced. This difference is the passenger lost
from our attacks. Figure 3c and 3d show the results of
our analysis. Assuming that the cost of conducting an
attack is $5 (the cost of canceling an Uber ride) and
the gain of the attacker is $10.75 (the average cost of
a ride in the area estimated from our data-set), Figure
3c shows that it is not economical to attack with more
than 5000 Zombies per hour. From this, we can deduce
that a cost of attack greater than $15 protects the MaaS
sytem against attacks.

7. CONCLUSION
In this paper, we propose and implement a framework

to analyze DoS attacks on MaaS systems. We propose
a tractable block-coordinate descent algorithm to com-
pute attack strategies which are applied to the network
in Manhattan.



This framework can also be extended to more general
settings, such as helping MaaS companies control their
networks if they can predict demand, to intentionally
unbalance their network in anticipation of high demand
in certain areas. In addition to this, MaaS companies
can use this model to defend themselves against such at-
tacks, such as setting an appropriate price for canceling
rides.

This also opens up exciting avenues of future work.
We have largely ignored congestion effects on the net-
work, one extension is to include these effects and de-
sign attacks that create congestion in critical parts of
the city. We also assumed that the MaaS company does
not respond to the attacks, and it would be interesting
to model this as a attacker-defender game.
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